High-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme
نویسندگان
چکیده
A central-upwind finite-volume (CUFV) scheme for shallow-water model on a nonorthogonal equiangular cubed-sphere grid is developed, consequently extending the 1D reconstruction CUFV transport scheme developed by us. High-order spatial discretization based on weighted essentially non-oscillatory (WENO) is considered for this effort. The CUFV method combines the alluring features of classical upwind and central schemes. This approach is particularly useful for complex computational domain such as the cubed-sphere. The continuous fluxform spherical shallow water equations in nonorthogonal curvilinear coordinates are utilized. Fluxes along the element boundaries are approximated by a Kurganov–Noelle–Petrova scheme. A fourth-order strong stability preserving Runge–Kutta time stepping scheme for time integration is employed in the present work. The numerical scheme is evaluated with standard shallow water test suite, which accentuate accuracy and conservation properties. In addition, an efficient yet inexpensive bound preserving filter with an optional positivity filter is used to remove spurious oscillations and to achieve strictly positive definite numerical solution. To tackle the discontinuities that arise at the edges of the cubed-sphere grid, we utilize a high-order 1D interpolation procedure combining cubic and quadratic interpolations.The results with the high-order scheme is compared with the results for the same tests for various schemes available in literature. Since, the scheme presented here uses local-cell information, it is expected to be scalable to high number of processors count in a distributed node high-performance computer. © 2015 Elsevier Inc. All rights reserved.
منابع مشابه
High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes
This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubedsphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on ...
متن کاملHigh-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedr...
متن کاملHigh-Order Central ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-Sphere Grids
A high-order central essentially non-oscillatory (CENO) finite-volume scheme is developed for the compressible ideal magnetohydrodynamics (MHD) equations solved on threedimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main technical challenge in extending the 2D meth...
متن کاملParallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere
High resolution and scalable parallel algorithms for the shallow water equations on the sphere are very important for modeling the global climate. In this paper, we introduce and study some highly scalable multilevel domain decomposition methods for the fully implicit solution of the nonlinear shallow water equations discretized with a second-order well-balanced finite volume method on the cube...
متن کاملA high-order fully explicit flux-form semi-Lagrangian shallow-water model
A new approach is proposed for constructing a fully explicit third-order mass-conservative semi-Lagrangian scheme for simulating the shallow-water equations on an equiangular cubed-sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 266 شماره
صفحات -
تاریخ انتشار 2015